Shadow mapping

  • 31 July 2014

One of the great benefits of teaching on computer game development modules at the university is that I have a justifiable reason for looking into interesting graphical effects for my work. It’s a real perk as far as I’m concerned. Last semester I covered shadow rendering as a new topic, which gave me the opportunity to find out about the subject in some depth.

Now it’s the summer and I have more time to experiment, so it only seemed right to apply some of these techniques to Functy; I’m hoping the function rendering will look a lot more realistic and solid once accurate shadows are being cast throughout the environment. Given the functions are all generated on the GPU, texture-based shadows seemed the most appropriate choice compared to stencil shadows. Texture-based shadows also strike me as more flexible and efficient in the long run. Below you can see the depth texture (greyscale) rendered alongside the existing function render (colour). Although they look similar, if you look closely you can see that they’re actually rendered from slightly different angles. That’s because the depth texture is rendered from the perspective of the light, rather than the camera.

Shadow depth map

Shadow depth map

The idea with texture-based shadow mapping is that by rendering the depth map from the perspective of the light, you get to see the parts of the world that the light is shining on. This is what the greyscale image in the screenshot above shows. The depth map is then used when rendering the functions to decide whether or not a given pixel is lit (visible from the light) or in shade (occluded from the light by another object). Put simply, if the distance of the pixel from the light is greater than the distance of the pixel transformed onto a point on the depth map, then the pixel is in shadow; otherwise it’s in light.

Once the shadow depth map has been rendered, this therefore needs to be fed into the fragment shaders used for rendering the functions. A quick texture lookup and a distance comparison are then baked into the shader to complete the process. Although it’s a really simple technique in theory, getting it to work in practice is turning out to be… intricate!

Sadly it’s been quite some time since I last had the chance to properly update the Functy codebase. Hopefully in time some of the latent improvements that haven’t yet made it into the release build can be rolled out, along with additions like this shadow rendering. It’s not quite there yet, but soon!

Sorry, the comment form is now closed.

Top